software.Rmd
VarPro: An R Package for Model-Independent Variable Selection via the Rule-Based Variable Priority
Download the package at https://github.com/kogalur/varPro
Author
Lu M.. Shear A, Kogalur U.B.(Maintainer) and Iswaran H.
VarPro: An R Package for Ensemble Models of Rank-Based Trees with Extracted Decision Rules
Download the package at https://CRAN.R-project.org/package=ranktreeEnsemble
Author
Yin R., Ye C. and Lu M.(Maintainer).
HIH: An R Package for High Order Interaction Variable Importance Through Random Forest
Download the package at https://github.com/luminwin/HIH
Author
Sha Y and Min Lu (Maintainer)
References
Lu M., Sha Y., Silva T.C., Colaprico A., Sun X., Ban Y., Wang L., Lehmann B.D. and Chen X.S. (2021). LR Hunting: A Random Forest Based Cell–Cell Interaction Discovery Method for Single-Cell Gene Expression Data. Frontiers in Genetics. 2021 Aug 20;12:708835. [pdf] [url] [.bib cite /exp]
Predicting COVID-19 cases and deaths for your own region at https://minlu.shinyapps.io/killCOVID19/
Author
Min Lu (Maintainer)
References
Lu M. and Ishwaran H. (2021). Cure and death play a role in understanding dynamics for COVID-19: data-driven competing risk compartmental models, with and without vaccination. PloS one 16(7): e0254397. [pdf] [supplemental pdf] [url] [.bib cite /exp]
Lu M. (2020). Dynamic Modeling COVID-19 for Comparing Containment Strategies in a Pandemic Scenario. Annals of Biostatistics & Biometric Application 4(1):1–4. [pdf] [url] [.bib cite /exp]
Computing Within-Study Variances and Covariances, Visualization and Missing Data Solution for Multivariate Meta-Analysis
Download the package at https://cran.r-project.org/web/packages/metavcov/
Find Website and Vignettes at https://luminwin.github.io/metavcov/
Author
Min Lu (Maintainer)
References
Lu M. (2023). Computing Within-Study Covariances, Data Visualization and Missing Data Solutions for Multivariate Meta-Analysis with metavcov Frontiers in Psychology. 2023 Jun 20;14:1185012. [pdf] [R code] [.bib cite /exp]
Precision Surgical Therapy for Adenocarcinoma of the Esophagus and Esophagogastric Junction
Summarizing the sample at https://minlu.shinyapps.io/ICM_minlu/
Predicting for a new patient at https://minlu.shinyapps.io/newpatient/
Author
Min Lu (Maintainer)
References
Rice T.W., Lu M, Ishwaran H., and Blackstone, E.H. (2019). Precision Surgical Therapy for Adenocarcinoma of the Esophagus and Esophagogastric Junction: A Machine Learning Causal Analysis. Journal of Thoracic Oncology, 14(12): 2164-2175. [pdf] [url] [.bib cite /exp]